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Executive Summary
Transitioning to a zero carbon electricity grid is likely to be a multi-trillion dollar undertaking1. Nearly one in 
three Americans currently have difficulty paying their energy bills,2 underscoring the importance of making 
this transition at least cost and ensuring that electric utilities, regulators and grid operators have the best 
possible analytical tools available to plan future energy resource investments. 

Utilities use a type of tool called a capacity expansion model to plan least-cost portfolios of energy 
resources (including generation, transmission and energy storage) to meet forecasted energy demand 
and clean energy goals. Many of the models in wide use today are ill-equipped to cost effectively guide 
the transition to a low-to-zero-carbon grid because they were not designed to account for the variability of 
renewable energy resources from hour to hour over a year, or across multiple years. 

In this study, we articulate our view of best practices that modelers can use to plan cost effective and 
reliable low carbon grids. This view is backed by leading academics and practitioners. We highlight some 
key limitations of many of the commercially available tools today, summarize research underscoring the 
costs of these issues, and point to methods that modelers should use to plan lower carbon, lower cost, 
more reliable grids. Finally, we summarize a case study using Form Energy’s capacity expansion tool and 
data from one of Form Energy’s commercial partners3, to demonstrate the measurable cost and reliability 
benefits that best-practice modeling methods can bring to utilities and their customers. The case study 
underscores many of the major findings from academia.

Limitations of incumbent capacity planning tools
The capacity expansion models in wide use today were designed around a planning mindset that assumed 
that thermal power plants are predictable and available when needed. Thus, if the electric grid had enough 
resources to meet peak demand, the grid would be capable of meeting demand at any other time. These 
tools were also built in an era that lacked the computational power and analytical methods available today. 
As a result, the tools include certain simplifications to save computational time and analytic complexity. 
Most notably, legacy capacity expansion models:

1.  Design resource portfolios based on limited time samples: Rather than make investment 
decisions based on a model of at least one full year, incumbent models design resource portfolios 
using a small sample of hours or days, and assume that this trimmed down time series accurately 
captures the full intra-year variability of renewable resources and storage.

2.  Design portfolios using ‘typical’ operating conditions: Incumbent models optimize portfolios for 
using ‘typical’ weather data, relying on reliability models to ensure the resulting portfolios are reliable 
across weather conditions. However, renewable generation and demand varies significantly from 
year-to-year, and portfolios designed for a single snapshot are less cost effective and reliable than a 
portfolio designed for diverse grid conditions. 

1 One recent cost estimate comes from Chloe Holden, 2019. The Price of a Fully Renewable US Grid: $4.5 Trillion.
2 U.S. Energy Information Administration, 2018. One in three U.S. households faces a challenge in meeting energy needs.
3 The case study relies on sensitive data. We have anonymized the data and partner identification as a result. 

https://www.greentechmedia.com/articles/read/renewable-us-grid-for-4-5-trillion
https://www.eia.gov/todayinenergy/detail.php?id=37072
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Capacity expansion model capabilities needed 
Academic and industry progress in building new capacity expansion models has led to an emerging set of 
best practices about how to plan low carbon grids that rely substantially on renewables and storage. Where 
possible, capacity expansion models should: 

1.  Make investment decisions based on at least one full year of grid operations at hourly resolution, 
including weather and load variability that reflects day-to-day, week-to-week, and season-to-season 
fluctuations. 

2.  Make investment decisions based on multiple weather years and key future system conditions, 
such as technological availability, commodity prices, or other variables.

Incorporating this level of granularity often requires modeling trade-offs, and the academic literature 
points to advanced modeling techniques that can avoid the need to capture multiple years of weather and 
system data at 8,760-hour granularity. Where these techniques are employed, it’s critical that their efficacy 
is benchmarked against the full granularity model. Despite the impact of model simplifications on planning 
outcomes, few commercial models today use the advanced methods pursued in academia and none 
provide any guarantee of the performance of the model simplifications employed.

The benefits of modern capacity expansion modeling 
Lower Costs: Models that represent hourly grid operations and can co-optimize portfolios across multiple 
scenarios produce lower cost portfolios than models that use time sampling and  typical weather years. 
Our case study confirms existing research and finds that, for one particular utility, full year, hourly resolution 
modeling produces portfolios that are more than 10% cheaper than time sampled portfolios. 

Accurate Technology Representation: Models that preserve the full time chronology of a year can  
accurately model technologies like long duration energy storage, which can produce energy continuously 
over days and can shift energy across seasons. By contrast, models that break apart the year’s chronology 
often can’t accurately model such technologies. Time sampling techniques overestimate baseload value, 
underestimate flexibility value, and often exclude long duration storage technologies altogether.  

Increased reliability: Full year, hourly resolution modeling and co-optimization across scenarios of future 
system conditions produces portfolios that are more reliable than those produced by less capable models 
that consider single snapshots of the future. 
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Introduction
The U.S. spends roughly $200 billion each year4 on electricity generation to meet growing electric demand 
and to replace old power plants. These investments translate to costs for customers, and, if insufficient, the 
electric grid’s reliability can suffer. Further, investments in new fossil fueled power plants can lock utilities into 
producing high levels of greenhouse gas emissions and causing other environmental and health damages 
that last decades. It is essential that decision makers make the best, most informed investments possible.  

Electric utilities and their regulators rely on capacity expansion models — computer models that help 
utilities identify the least cost portfolio of power infrastructure investments needed to meet demand — 
as one of the primary tools to inform their investment decisions.5 Unfortunately, the vast majority of the 
capacity expansion models used today were developed for electric grids with fossil fuel backbones and 
embed many assumptions that reflect this fact. 

The power system is changing. In 2010, wind and solar contributed less than 2.4% of U.S. electricity 
generation capacity, but this quadrupled to 9.9% by 2019. Renewables and storage comprise the majority 
of planned power investments around the country, portending a continuation of these trends (see Figure 1). 
As the power sector transitions, the models utilities and developers use to guide their investment decisions 
need to adapt as well. 

Study purpose
This study compares new, best-in-class capacity expansion modeling approaches with existing modeling 
tools to evaluate how their differences impact electric resource needs, portfolio costs and reliability in grids 
with high levels of renewables. The study reviews the current state of capacity expansion planning and 
highlights some of the primary shortcomings of these planning techniques. This paper then recommends 
capacity expansion modeling best practices drawn from academic and industry research. Finally, this paper 
summarizes a simple case study based on data from one of Form Energy’s utility partners6, to underscore 
the value of these recommendations.

Figure 1: Renewables and storage as a fraction of planned generation capacity by state

Data source: S&P Global Market Intelligence capacity in development

4 See Table 2.3 of the U.S. Energy Information Administration’s Electricity Data for annual spend: https://www.eia.gov/electricity/annual/
html/epa_02_03.html. See Table 8.3 for a breakdown of generation and other expense categories for Investor Owned Utilities: https://
www.eia.gov/electricity/annual/html/epa_08_03.html

5 One of the first papers - if not the first paper - to apply computational optimization techniques to power system planning was published in 
1957. Massé and Gibrat, 1957. Application of Linear Programming to Investments in the Electric Power Industry. Management Science. 
Vol. 3, No.2. https://doi.org/10.1287/mnsc.3.2.149

6 Form Energy has engaged in planning exercises with more than 100 utilities and asset owners and developers globally.

https://www.eia.gov/electricity/annual/html/epa_02_03.html
https://www.eia.gov/electricity/annual/html/epa_02_03.html
https://www.eia.gov/electricity/annual/html/epa_08_03.html
https://www.eia.gov/electricity/annual/html/epa_08_03.html
https://doi.org/10.1287/mnsc.3.2.149
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Incumbent Modeling Tools and 
Techniques
Historic Approach to Grid Modeling
The electric grid planning tools in wide use today were designed for an era when coal, natural gas, fuel oil 
and nuclear power plants were the grid’s primary source of energy and the least-cost technologies available 
to meet growing electricity demand. Grid planning models were designed in service of a mindset that 
assumed that thermal power plants are predictable and available when needed, and thus if the electric grid 
had enough resources to meet the highest peak in demand, with an extra margin as an insurance policy, the 
grid would have enough capacity to meet energy demand in all other hours of the year. These tools were 
also built in an era that lacked the computational power and analytical methods available today. As a result, 
the tools were structured using certain simplifications to save computational time and analytic complexity.

The historical process for grid planning is summarized in Figure 2, and the key simplifications are described 
in the subsequent subsections. The process starts with reducing a single year or multiple years down 
to a few time slices and determining the least cost set of investments required to meet demand across 
these time samples (steps 1-3). The resulting portfolio is then run through a model with much higher time 
resolution and a larger number of weather and system conditions, often referred to as a production cost 
model, risk model, or reliability model. Models, or simple rules of thumb, are used to determine any new 
investments required to patch up any reliability failures encountered (steps 4-5). 

Figure 2: The historical approach to grid planning
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Investment Modeling Versus Operational Modeling
While production cost models are often run hourly, today’s commercial planning models almost always 
perform the crucial capacity planning step — where the bulk of investment decisions are made — with only 
a small number of time slices. Our review of the literature and our case study will show the extreme impact 
that this discrepancy can have on the perceived value of renewable energy and energy storage.

The Need for Model Simplifications
Grid planning models need to include tens to hundreds of millions of variables to fully capture the 
electric grid’s myriad uncertainties, such as future load levels, generation availability, commodities prices, 
transmission and distribution availability, and the detailed operational characteristics of grid assets. This 
means that grid modelers need to strike a balance between simplifications to reduce computational 
complexity and sufficient nuance to meaningfully inform utilities’ electricity infrastructure investments.

Common Capacity Expansion Simplifications: Reduced Time 
and Typical Years
1) Few sample hours and days
Capacity expansion models tend to shy away from modeling the full complexity of a year: instead of 
modeling every hour of the year, they use only a few sample hours or days to represent an entire year of 
electric grid operations. Table 1 highlights some of the time sampling simplifications used in open source 
and proprietary commercial models. This simplification limits the models’ ability to represent weather 
events that can span multiple days to weeks, the variability of renewable generation from day-to-day and 
season-to-season, and the services that technologies like energy storage can provide across time horizons.  

Table 1: Time sampling methods in a selection of commonly-used capacity expansion models

Model Time treatment
NREL ReEDS7 [open source] 17 hours

EIA NEMS8 9 hours

BNL MARKAL9 9 hours

UC Berkeley SWITCH10 144 hours

ABB Capacity Expansion11 84 days

Energy Exemplar Aurora12 104 days, every-other-hour resolution

7 See the method outlined in: Regional Energy Deployment System (ReEDS) Model Documentation: Version 2018.
8 See the method outlined in: The National Energy Modeling System: An Overview 2018.
9 See the method outlined in: Documentation for the MARKAL Family of Models. 
10 See the method outlined in: Nelson et al., 2012. High-resolution modeling of the western North American power system demonstrates low-

cost and low-carbon futures. Energy Policy. 
11 See the method outlined in: Integrated Resource Plan of Southern California Edison Company. September 1, 2020.
12 See the method outlined in: San Jose Clean Energy 2020 Integrated Resource Plan. September 1, 2020.

https://www.nrel.gov/docs/fy19osti/72023.pdf
https://www.eia.gov/outlooks/aeo/nems/overview/pdf/0581(2018).pdf
https://iea-etsap.org/MrklDoc-I_StdMARKAL.pdf
https://rael.berkeley.edu/wp-content/uploads/2015/04/Nelson-Kammen-SWITCH-EnergyPolicy-2012.pdf
https://rael.berkeley.edu/wp-content/uploads/2015/04/Nelson-Kammen-SWITCH-EnergyPolicy-2012.pdf
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M346/K291/346291781.PDF
https://sanjosecleanenergy.org/wp-content/uploads/2020/09/San-Jose-Clean-Energy-2020-Integrated-Resources-Plan-Public-Version.pdf
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2) Limited representation of year-to-year weather and load variability (‘typical’ years) 
Today’s commercial capacity expansion models typically design least-cost resource portfolios to meet 
demand from a small time sample from a single year’s weather characteristics and energy demand. 
For example, NREL’s ReEDS model uses the 2012 weather year as the basis for all generation and load 
profiles.13 Grid planners then use other methods (production cost models, for example) to ensure that 
a portfolio is reliable across a more diverse set of conditions. When these models encounter reliability 
failures resulting from weather or system conditions not captured in the capacity expansion model, they 
add capacity to improve reliability. The result is a portfolio that is far from least-cost for the full range of 
conditions that can and do occur. Utilities across the U.S. use combinations of capacity expansion and 
reliability models to inform the design of their portfolios.

These simplifications were reasonable when fossil-fueled generation was the primary source of existing 
and new capacity, but when used to plan for a future with high levels of variable renewable resources, they 
risk producing portfolios that are both higher cost and less reliable than expected. 

This process can be improved by incorporating diverse weather years and grid conditions into the portfolio 
design (i.e. capacity expansion) stage, co-optimizing the resource portfolio across these diverse futures. It 
is computationally infeasible to incorporate all possible grid futures into a single model, but it is possible to 
design across a limited subset of factors that will drive the biggest changes in investment decisions. These 
factors include renewable generation profiles and technology cost, commodity costs, and demand levels. 
These more robust resource portfolios can then be more deeply analyzed in a reliability model, ideally 
resulting in fewer resources added with rules of thumb (Step 5 in Figure 2). This ultimately results in lower 
cost, more reliable systems than those designed based on single test years. 

Effects of Model Simplifications
Academic and industry research has proven that it is necessary to model the grid with sufficient time 
granularity and system variability to achieve low cost, reliable portfolios with high levels of renewables and 
storage. As governments and utilities have set increasingly ambitious decarbonization targets, modelers 
have increasingly focused on how to appropriately plan investments to meet these targets. The following 
sections highlight the lessons learned about the pitfalls of incumbent modeling techniques from scholars in 
the field of deep decarbonization planning.

1) Limited Time Sampling Produces Inaccurate Resource Mixes in High-Renewables Grids 
Time sampling a small fraction of the year changes the mix of assets — i.e. wind, solar, storage, etc. — that 
models select to minimize costs and meet reliability needs. Several studies have shown that limited time 
sampling overestimates the need for baseload generation, underestimates curtailment of renewables, and 
underestimates needs for flexibility options.14 As a result, the resource portfolios that incumbent modeling 
tools select, and the investment signals they create, are unlikely to realistically meet renewable energy 
targets. Echoing these findings, a study from Lawrence Berkeley National Laboratory researchers found 
that time sampling methods underestimated total capacity needs, but overestimated baseload capacity 
needs.15 Similarly, in an analysis of Chile’s electricity system, scholars16 found that high temporal resolution 
and inclusion of diverse system conditions in capacity expansion modeling increased the optimal installed 
capacity of storage by more than one order of magnitude and led to a lower cost, more reliable system. 

13 See the method outlined in: Regional Energy Deployment System (ReEDS) Model Documentation: Version 2018.
14 See: 1) Poncelet et al., 2016. Impact of the level of temporal and operational detail in energy-system planning models. Applied Energy, 

https://doi.org/10.1016/j.apenergy.2015.10.100. And 2) Gustavo Haydt et. al, The relevance of the energy resource dynamics in the 
mid/long-term energy planning models, Renewable Energy, 2011; 36:3068-3074, https://doi.org/10.1016/j.renene.2011.03.028. And 
Mallapragada et al., 2018. Impact of model resolution on scenario outcomes for electricity sector system expansion. Energy, https://doi.
org/10.1016/j.energy.2018.08.015. 

15 Nicolosi, M, The importance of high temporal resolution in modeling renewable energy penetration scenarios, 2011; 9th Conference on 
Applied Infrastructure Research, Berlin, https://escholarship.org/uc/item/9rh9v9t4

16 Diaz et al., 2019. The importance of time resolution, operational flexibility and risk aversion in quantifying the value of energy storage in 
long-term energy planning studies. Renewable and Sustainable Energy Reviews; 112: 797-812, https://doi.org/10.1016/j.rser.2019.06.002.

https://www.nrel.gov/docs/fy19osti/72023.pdf
https://doi.org/10.1016/j.apenergy.2015.10.100
https://doi.org/10.1016/j.renene.2011.03.028
https://doi.org/10.1016/j.energy.2018.08.015
https://doi.org/10.1016/j.energy.2018.08.015
https://escholarship.org/uc/item/9rh9v9t4
https://doi.org/10.1016/j.rser.2019.06.002
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Historically, modelers have used limited time samples in order to more accurately capture other techno-
economic details such as the ramp rates and starting and stopping conditions of generators. However, 
research published in the journal Applied Energy found that, when it comes to high renewables grids, 
using detailed time series is more important than accounting for potential variations in techno-economic 
assumptions.17 

2) Limited Time Sampling Methods Fail to Accurately Model Long Duration Energy Storage
Multi-day and long duration storage are emerging technology categories that hold the promise of cost-
effectively supporting the reliability of high renewable grids during days or weeks of low renewable energy 
output. However, many models use time sampling techniques that break time into independent chunks 
with no, or limited, inter-period connection, which underestimates system costs and artificially limits the 
perceived value of long duration energy storage technologies such as electrolytic hydrogen, pumped 
hydropower, and many others.18 While some models use methods that attempt to make time sampling 
suitable for storage, a recent study published in Applied Energy found that all time sampling methods 
— whether using typical days (24 hours), three day periods (72 hours), or week-long periods (168 hours) 
— underestimated the optimal installed capacity of long duration storage. In fact, only the week-long time 
sampling method was able to capture any long duration storage value and include long duration storage in 
a least cost portfolio;19 nonetheless, even week-long samples undervalued long duration storage relative to 
the full time series modeled system. 

3) Modeling Limited Weather and System Variability Misrepresents Resource Needs and Costs
Multi-year weather variability can significantly impact the design and operation of renewable-heavy 
grids. Planning models that consider only one or a few years of weather data can produce substantially 
different estimates of the least cost mix of renewable energy. In a 2013 study of the United Kingdom (U.K.) 
power system, researchers found that optimization models based on different years of weather data 
could produce wildly different results, and that optimizing over multiple weather years was necessary to 
accurately capture the value of wind.20 

The failure to capture multiple weather years also impacts perceived needs for flexible resources, even in 
grids with moderate levels of renewable resources. A recent study in Nature Energy21 assessed the impact 
of modeling a single weather year versus multiple weather years on the design of the U.K. power system, 
and found that in a 50% renewable system, needs for energy storage capacity and other flexible generation 
varied by 40% depending on the weather year modeled. The authors found that using only one year of weather 
data can result in systems that frequently lack sufficient resources to meet energy demand over the course 
of multiple years. A recent study from scholars at the California Institute of Technology, Stanford, and the 
University of California at Irvine found that capacity expansion models using six years of weather and load 
data led to almost double the long duration storage in the least cost mix compared to models with only a 
single year.22

17 Poncelet, K et. al, 2016. Impact of the level of temporal and operational detail in energy-system planning models, Applied Energy;162: 631-643.
18 See Nahmmacher, Paul et. al, Carpe diem: A novel approach to select representative days for long-term power system modeling, Energy, 

2016;112:430-442, https://doi.org/10.1016/j.energy.2016.06.081. And Modeling hourly electricity dynamics for policy making in long-term 
scenarios: https://doi.org/10.1016/j.enpol.2011.06.062

19 Kotzur et al. Time series aggregation for energy system design: Modeling seasonal storage. Applied Energy 2018;213: 123-135. https://doi.
org/10.1016/j.apenergy.2018.01.023

20 Pfenninger. Dealing with multiple decades of hourly wind and PV time series in energy models: a comparison of methods to reduce 
time resolution and the planning implications of inter-annual variability. Applied Energy (2017);197:1–13. http://dx.doi.org/10.1016/j.
apenergy.2017.03.051.

21 Zeyringer, M., Price, J., Fais, B. et al. Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal 
and inter-annual variability of weather. Nat Energy 3, 395–403 (2018). https://doi.org/10.1038/s41560-018-0128-x

22 Dowling et al., 2020. Role of Long-Duration Energy Storage in Variable Renewable Electricity Systems. Joule; 4: 1907-1928, https://doi.
org/10.1016/j.joule.2020.07.007.

https://doi.org/10.1016/j.apenergy.2015.10.100
https://doi.org/10.1016/j.energy.2016.06.081
https://doi.org/10.1016/j.enpol.2011.06.062
https://doi.org/10.1016/j.apenergy.2018.01.023
https://doi.org/10.1016/j.apenergy.2018.01.023
http://dx.doi.org/10.1016/j.apenergy.2017.03.051
http://dx.doi.org/10.1016/j.apenergy.2017.03.051
https://doi.org/10.1038/s41560-018-0128-x
https://doi.org/10.1016/j.joule.2020.07.007
https://doi.org/10.1016/j.joule.2020.07.007
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Failing to optimize resource portfolios across multiple weather years can lead to a failure to reach imposed 
decarbonization targets and can underestimate the cost of reaching those targets. Researchers from 
University College Cork, ETH Zurich, and Imperial College London23 found that generation portfolios 
designed with individual weather years led to higher costs of meeting decarbonization targets than 
portfolios designed by accounting for diverse weather conditions. 

Because storage acts as a hedge against future uncertainties, optimizing across uncertainties can uncover 
greater storage value. In an analysis of Chile’s electricity system, scholars24 found that optimizing across 
uncertain fuel prices lead to greater renewables and storage, and note that “failing to appropriately upgrade 
[capacity expansion] models may lead to a significant underestimation of [renewable] integration costs and 
risks, misleading relevant decisions in policy, regulation, market design.”

23 Seán Collins et al., 2018. Impacts of Inter-annual Wind and Solar Variations on the European Power System, Joule; 2: 2076-2090, https://
doi.org/10.1016/j.joule.2018.06.020.

24 Diaz et al., 2019. The importance of time resolution, operational flexibility and risk aversion in quantifying the value of energy storage in 
long-term energy planning studies. Renewable and Sustainable Energy Reviews; 112: 797-812, https://doi.org/10.1016/j.rser.2019.06.002

https://doi.org/10.1016/j.joule.2018.06.020
https://doi.org/10.1016/j.joule.2018.06.020
https://doi.org/10.1016/j.rser.2019.06.002
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New Modeling Capabilities Needed to 
Achieve Low Carbon Electric Grids
Fortunately, academics and businesses have made progress in building new models to better 
accommodate new clean energy resources, and a set of best practices is emerging about how to plan for 
low carbon grids that rely heavily on intermittent renewables and storage: grid planning models must be 
able to capture the variability of renewable resources, demand, and grid conditions—and the impacts that 
this variability has on system operations and design—over days, weeks, and even years.

Capabilities Needed: Detailed Chronology and System 
Variability
1) Full Year Representation at Hourly Resolution 
Capacity expansion models should ideally capture the hour by hour dynamics of renewable generation, 
load, and storage for at least one year. Full hourly granularity can require other modeling tradeoffs, such 
as lower technological or spatial detail. Where these details are critical, it may be valuable to explore high 
quality methods to reduce temporal granularity. There are advanced methods that can substitute for full 
year, hourly resolution, but it is critical these methods are robustly tested to guarantee they can capture all 
necessary grid dynamics.25 This testing is not common for today’s commercial tools.

In a simple case study below, we show that modeling the grid with full year, hourly resolution results in 
resource portfolios that are lower cost and more reliable than portfolios that emerge from reduced form 
models, underscoring the findings of the academic community. 

2) Co-optimization Across Diverse Weather and System Conditions
Models should be able to identify the least-cost resource portfolio that satisfies grid reliability requirements 
under a wide range of potential scenarios. The most critical uncertainties are weather-driven renewable 
resource availability and load events, but other critical uncertainties may include technology cost and 
availability, and fuel cost and availability. This differs from the typical approach of developing a resource 
portfolio based on ‘typical’ weather and load conditions. In a renewable energy-centric electric system in 
which energy demand and energy supply are both highly sensitive to weather variability across seasons and 
years, and where future technology costs remain uncertain, co-optimization is a powerful technique to help 
grid planners build resource portfolios that are likely to meet their cost and reliability goals under a range of 
future grid conditions.

The combined capability to perform co-optimization and model full year hourly grid operations can 
significantly improve the overall cost and operational effectiveness of planned power systems. However, 
outside of a small group of models, these methods are not widely adopted in commercial planning 
models today. Unless incumbent models evolve or utilities switch to using models better suited for grids 
with high levels of renewable energy and energy storage, there’s a risk that outdated models will guide 
utilities to invest in a suboptimal mix of assets, increasing costs by tens to hundreds of millions of dollars, 
jeopardizing reliability, and excluding key emerging technologies like long duration storage. 

25 See, e.g., Kotzur et al., 2018, footnote 11.



11

Table 2: Next-generation capacity expansion models capable of full year, hourly resolution and/or co-optimization

Model Time treatment Scenario Co-Optimization
Vibrant Clean Energy WIS:dom Proprietary, configurable to full 

year, hourly resolution or greater 
Proprietary, but captures diverse 
weather conditions 

University of Hawaii Switch 2.0 
[open source]

Configurable to full year, hourly 
resolution or greater

Configurable to capture diverse 
weather & system conditions

MIT/ Princeton GenX [soon to be 
open source]

Configurable to full year, hourly 
resolution or greater  

Configurable to capture diverse 
weather & system conditions

Form Energy FormwareTM Configurable to full year, hourly 
resolution or greater 

Configurable to capture diverse 
weather & system conditions

https://www.vibrantcleanenergy.com/wp-content/uploads/2019/04/VCE-WISdom-Brochure.pdf
http://switch-model.org/
https://energy.mit.edu/wp-content/uploads/2017/10/Enhanced-Decision-Support-for-a-Changing-Electricity-Landscape.pdf
http://formenergy.com
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Case Study: Advanced Modeling 
Techniques in Practice
To evaluate how the modeling best practices we highlight above may impact utility portfolio planning in 
practice, we designed a set of case studies to quantify the benefits of grid planning using full year, hourly 
resolution modeling and co-optimization compared to conventional modeling approaches. These case 
studies build upon our review of capacity expansion modeling best practices and our experience working 
with utilities and project developers across the power sector. We sourced data and select assumptions 
from one of Form Energy’s utility partners. We’ve normalized and anonymized aspects of the data in light of 
its sensitivity. We then used FormwareTM — Form Energy’s proprietary capacity expansion modeling tool — 
to design least cost portfolios of generation and storage resources under a variety of futures. 

The cases analyzed do not represent our partner’s exact planning assumptions; rather, the cases represent 
realistic planning assumptions with real-world data while exploring the impact of common modeling 
assumptions. These case studies are simplified and modified versions of the scenarios we analyze with our 
partners. 

Our results confirm the findings of academic and industry literature. First, capacity expansion models with 
full year, hourly granularity lead to lower cost systems than models that are less granular. Second, models 
that don’t capture the full degree of system variability run the risk of excluding certain technologies from the 
chosen asset mix based purely on modeling assumptions, rather than on system needs. Third, our results 
underscore the fact that including diverse weather and system conditions into the design of resource 
portfolios lowers system costs and increases reliability relative to test year designs.

Study Design
Like many U.S. utilities, our partner’s portfolio today consists of coal and gas generation with a significant 
and growing share of renewable resources. When we began working together, our partner’s portfolio 
was majority thermal resources (a mix of coal and gas), complemented by roughly 30% wind power (as 
a fraction of peak demand). The technology options we evaluated include short duration storage, long 
duration storage, and wind. The resource costs and other attributes considered are depicted in Table 3.26  

Table 3: Technologies modeled and their attributes

Attribute Lithium ion Long Duration Energy 
Storage (LODES) Wind

Low High Low High Low High
Energy Capex [$/kWh] $85 $155 $3.75 $11.50 NA NA

Power Capex [$/kW] $280 $515 $330 $1,275 $1,125 $1,125

Design Duration27 [hours] 1-100 1-100 100-200 12-48 NA NA

Round Trip Efficiency [%] 85% 85% 45% 49% NA NA

OpEx [$/kW-yr] $5 $20 $30 $42.50 $34 $34

Lifetime [years] 25 25 25 25 25 25

26 See the Methodology section for more details on cost derivations. These costs are not intended to represent Form Energy’s technology.
27 Design durations reflect the durations that Formware is able to select in the least-cost mix. The range of design durations reflects the 

fact that certain costs and performance attributes scale as a battery’s duration scales, while others do not. As a result, the cost and 
performance parameters for a 24-hour battery can differ from a 100-hour battery. A 100 hour minimum design duration makes the 
technological costs in the low cost scenario possible.
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The Benefits of Full Year, Hourly Resolution Modeling 
Compared to Limited Time Sampling 
We designed three cases to highlight the potential impact of time sampling methods compared to 
modeling grid operations over a full year of 8,760-hour operations:28

• 8760 Case: Designs generation and storage portfolios using full hourly resolution of forecasted load and 
renewable generation (using 2030 load and simulated 2011 wind data).29 Does not use any time sampling. 

• Time Sampled Case: Modeled: Uses a time sampling technique based on a method developed by 
the National Renewable Energy Laboratory (NREL), which estimates resource needs and costs over 
a subset of five days meant to represent the average winter, spring, summer, and fall day, as well as 
the peak day, for a total of 120 hours, and scales those results to reflect annual demand. This time 
sampling method closely mimics NREL’s Regional Energy Deployment System (ReEDS) model, and is 
covered in more detail in the technical appendix.

• Time Sampled Case: Achieved: Extracts the resource portfolio of wind and storage from the Time 
Sampled Case: Modeled, and operates these assets over the entire year with hourly resolution. This 
case reflects the true cost of the Time Sampled Case. 

Time sampling predicts low costs but results in higher actual costs than full year, hourly resolution 
modeling
Figure 4 shows the levelized costs for each of the three cases, with cost ranges reflecting the low and high 
technology cost estimates from Table 1. The time-sampling method results in a resource portfolio that 
appears to have low levelized system costs (Time Sampled Case: Modeled). However, when this resource 
portfolio is operated over a full year, the portfolio’s true costs far exceed the modeled costs (see Time 
Sampled Case: Achieved). 

There are two main drivers of these higher costs. First, in the Achieved case, fossil fuel plants run more 
frequently than the Modeled case predicts, as wind and short duration storage resources are less firm than 
expected. Second, there is a small amount of lost load (representing 0.01% of demand). Third, the Time 
Sampled cases install a significant amount of wind and short duration capacity, which is ultimately under-
utilized. The result is that the time sampling model predicts low operational costs, but achieves relatively 
high operational costs. The results show that a portfolio designed using a full year’s 8,760-hour time 
horizon from the outset (the 8760 Case)  results in lower levelized costs in practice.

Small differences in levelized costs translate into huge costs to customers. The $5/MWh difference in 
levelized costs between the 8760 Case and the Time Sampled Case: Achieved (as shown in Figure 4) 
results in $27 million in savings per gigawatt of peak demand per year. 

28 See further details in the Methods section. 
29 2011 was the most typical wind year between 2000 and 2018 in the region we analyzed. We explore multiple wind years in the following 

sections. 

https://www.nrel.gov/analysis/reeds/
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Figure 4: Levelized cost by scenario

Time sampling undervalues technologies that can shift energy over long time periods
It is intuitive that modeling techniques that consider only a subset of days or hours of a year and that do 
not capture the grid’s continuous operations over long sequential periods will fail to accurately consider 
needs for technologies, like long duration energy storage, that have the ability to shift energy or demand 
over long time periods. The case study below quantifies this dynamic. It shows how the choice of modeling 
approach — full year, hourly resolution modeling compared to time sampling — significantly affects the mix 
of resources models select as part of a least-cost portfolio. We focus on long duration energy storage in 
this case study, but time sampling broadly undervalues resources that provide flexibility, as the academic 
literature highlighted in this paper shows. 

Figure 5 illustrates how time representation in models affects the resource portfolios models select.30 

The time sampled cases completely exclude long duration storage, whereas the 8760 Case selects a 
significant amount of long duration storage (nearly 20% of peak load), a difference attributable entirely to 
modeling techniques rather than resource value. This is due to the fact that the Time Sampled cases break 
the chronology between modeled days, finding little value in storage that stores energy over many days. 

Likewise, the Time Sampled Case: Modeled selects twice the wind capacity as the 8760 Case, an outcome 
that in practice can have significant secondary effects on perceived land use impacts and needs for new 
transmission infrastructure to support excess renewable capacity. The over reliance on wind and short 
duration storage in the Time Sampled cases is due in part to the fact that the time sampling method 
creates average daily profiles of renewable energy production.31 Profile averaging makes the wind energy 

30 The Time Sampled: Modeled and Time Sampled: Achieved cases have the same asset builds by design.
31 This mimics the method in NREL’s Regional Energy Deployment System (ReEDS) model, although ReEDS employs other methods to 

address excessive reliance on renewables. For example, ReEDS uses heuristics to estimate the “capacity value” (an estimate of the 
reliability of the asset) of renewables and other resources, and sets constraints requiring the model to procure resources that sum to a 
sufficient level of capacity value. 
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appear firm and masks real-world events when wind output may be low over periods longer than a day. As 
a result, the Time Sampled model finds significant opportunity to charge shorter duration batteries with 
what appears to be low cost, always available energy within the day. In fact, when the full year is examined 
at hourly resolution, we see several multi-day low wind stretches occur that render short duration storage 
insufficient (see, for example, Figure 6).

Figure 5: Resource portfolio by scenario (low cost case)32

Time sampling produces portfolios that are less reliable than expected 
Time Sampled portfolios are often less reliable than expected when exposed to the diverse system 
conditions that can occur over a full year. To test the reliability of a Time Sampled portfolio we simulated 
the operations of the resource portfolios from the 8760 Case and the Time Sampled Case over three 
weather years: 2010, 2011, and 2014. In the geography analyzed, 2010 was a relatively low average wind 
production year among the 2000 to 2018 period examined; 2011 had typical wind patterns; and 2014 had 
relatively high production wind patterns. 

Figure 6 shows how the portfolios from the 8760 Case and the Time Sampled Cases perform during a roughly 
5-day period with low wind output in February 2010. Due to its inclusion of long duration energy storage, 
the 8760 Case portfolio is able to meet load and maintain grid reliability across the entire period of low wind 
output. However, the Time Sampled cases experience nearly two days of lost load.  This demonstrates the 
risk of relying on models that perform time sampling: they are incapable of accurately capturing the links 
between days, and thus the operational challenge of meeting load over successive days of low renewable 
energy output. As a result, they have a structural bias: they undervalue needs for firm, flexible, dispatchable 
resources that can deliver energy over successive days, and they discount the risk of having insufficient 
renewable generation to recharge daily-cycling lithium-ion storage from one day to the next. 

32 The high cost results follow a very similar pattern, and are shown in the Appendix. 
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Figure 6: Asset operations over a select one week period, low cost case

To prevent these multi-day outages from occurring, grid planners typically pair legacy capacity expansion 
tools with separate reliability models that can simulate system operations across full 8,760-hour annual grid 
operations over multiple weather years. When the traditional two-step capacity expansion plus reliability 
assessment process identifies that portfolios have an unacceptable risk of lost load, the  reliability model 
will add additional assets outside of the least-system-cost framework until the modeled system reaches 
the desired reliability target. Because these assets are added without least-cost optimization, the result is 
a higher cost system than what would arise if least-cost optimization were conducted while modeling full 
8,760-hour grid operations. By incorporating diverse weather conditions into the optimal resource portfolio 
design step, more advanced capacity expansion tools such as Formware can dramatically reduce the need 
for reliability models to add capacity with heuristics, rather than optimization. 

The value of co-optimization 
Power system planners face many uncertainties beyond the availability of renewable generation: future 
commodity prices, electricity demand, technology costs, transmission availability, and other factors can 
impact the mix of resources that capacity expansion models select in a least-cost optimization. To account 
for these uncertainties, incumbent capacity expansion models take one of two approaches: 1) ignore 
uncertainties and design a system around a single set of assumptions (referred to as a “test year”); or 2) 
perform sensitivity analyses to examine the effects of uncertainties, and then rely on judgment to choose 
which uncertainties to incorporate in reliability models. 
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Ideally, grid planners should have access to a third and better option: modeling tools with the ability to 
develop a single portfolio that is co-optimized across a range of uncertain future scenarios. This approach 
has the potential to result in a portfolio that is least-cost across a range of future grid conditions and 
uncertainties and is therefore less likely to result in stranded costs and avoidable reliability risks. 

Co-optimization comes at a cost: it is more computationally intensive and complex than single-scenario 
optimization. It is infeasible to incorporate all possible future conditions and their probabilities of occuring 
into the portfolio design step. However, co-optimization is feasible when applied to a subset of scenarios 
that are likely to have major impacts on grid reliability and cost. 

To demonstrate the potential value of co-optimization relative to a typical “test-year” approach, we designed 
a simple case study that co-optimized the utility’s resource portfolio across different weather years and 
future system conditions. Specifically, we considered the following conditions: 

• Weather years: 

 – Low wind (2010 wind data)
 – Typical wind (2011 wind data)
 – High wind (2014 wind data)

• System uncertainties:

 – High gas prices ($5/MMBtu in 2030, compared to the $3/MMBtu base forecast)
 – High demand (a 25% increase in annual demand over the 2030 base case)
 – Limited transmission availability (transmission can only deliver additional wind equivalent to 30% 

of the utility’s peak load)

We first developed a case in which we co-optimize the resource portfolio across the six conditions 
described above.33 We then developed optimal resource portfolios for each of the above system conditions 
individually, and operated each of these single-scenario-designed portfolios across all of the scenarios to 
arrive at their true levelized cost of energy. We did not use any time sampling in these model runs; each 
portfolio was developed using a full 8,760-hour time series of load and generation. 

Figure 7 shows the levelized costs from these model runs, which demonstrate that co-optimization results 
not only in the least-cost system, when considering all possible futures, but it also results in the lowest 
spread across high and low cost resource scenarios. 

33 For simplicity, we assumed equal probabilities of these futures rather than expected probabilities. In practice, the expected probabilities of 
different weather years and events can easily be incorporated, as well as more subjective probabilities such as the likelihood that a new 
industrial facility (i.e. large incremental load) or transmission line will be built.
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Figure 7: Levelized cost by scenario: comparing co-optimization with a test year approach

Similar to the time sampling cases shown above, small changes in levelized costs result in tens of millions 
of dollars in additional costs to consumers. The asset builds from the six scenarios plus co-optimization 
across these scenarios are shown in Figure 8. Co-optimization finds there is higher value in technologies 
like long duration storage that provide flexibility, as these technologies act as a hedge against diverse 
futures. This result echoes the academic literature, which highlights the risk mitigation value of long 
duration storage.34

There are two key drivers of higher costs in the non-co-optimized cases. First, smaller zero carbon resource 
portfolios lead to heavier reliance on the utility’s existing fleet of thermal resources, including in some 
cases heavy reliance peakers that are costly, relative to the remainder of the utility’s fleet. Second, smaller 
resource portfolios lead to less reliable operations during periods of low wind or high demand; as modeled, 
reliability failures come at a cost of $9,000/MWh35, meaning that a few MWh of lost load can add up in cost 
quickly. This also explains why the portfolio that is closest in cost to the co-optimized portfolio is built to 
handle the high demand scenario.

34 In particular, see: Diaz et al., 2019. The importance of time resolution, operational flexibility and risk aversion in quantifying the value of 
energy storage in long-term energy planning studies. Renewable and Sustainable Energy Reviews; 112: 797-812, https://doi.org/10.1016/j.
rser.2019.06.002.

35 See the Appendix for context on this number. 

https://doi.org/10.1016/j.rser.2019.06.002
https://doi.org/10.1016/j.rser.2019.06.002
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Figure 8: Resource portfolio by scenario (low cost case)36

36 The high cost results follow a very similar pattern, and are shown in the Appendix. 
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Recommendations
Given the current pace and scale of the electric grid’s transformation, we encourage utility regulators, 
utilities, and independent system operators to act swiftly to adopt best-in-class modeling approaches. 
This single action is likely to lower system costs and lower reliability risks as renewable and zero-carbon 
resources increasingly replace existing fossil-fueled resources. We suggest minimum modeling capabilities 
grid planners should adopt, steps grid planners can take to smoothly transition to using new modeling 
approaches, and broader investments in modeling tools and studies that are needed to build industry 
consensus about best-in-class approaches to modeling low-carbon electric grids. 

Best Practice Modeling Capabilities
We recommend that grid planners ensure that the capacity expansion modeling tools they use have certain 
minimum capabilities:

• Full Year, Hourly Resolution: Models should be able to represent at least one full year of hourly grid 
operations (an 8,760-hour time horizon) to accurately capture the effects that varying demand and 
renewable generation have on future resource needs and reliability. Increasing temporal granularity 
can require some modeling tradeoffs. Where making these tradeoffs is unacceptable, some advanced 
time sampling methods can be used, if the model can demonstrate that the resource portfolios 
produced reasonably match the resource portfolios from a full time series model.37 

• Co-Optimization Across Diverse Weather and System Conditions: Models must have the ability to 
develop a single portfolio that reflects the least-cost resource mix across multiple scenarios of future grid 
conditions - most critically, across weather futures that account for real but atypical weather conditions. 
Without this capability, capacity expansion models are unlikely to result in portfolios that remain least-cost 
as weather, technology costs, energy costs, and energy demand evolve in uncertain ways. 

Process to Transition to New Modeling Capabilities
Grid planners should invest in a transparent step-wise process to examine existing modeling practices, 
compare these practices against new modeling capabilities, and transition to adopting new modeling 
approaches where needed. 

Step 1: Evaluate
Examine current modeling practices and whether they meet minimum recommended standards by asking 
the following questions:

1.  How do existing models represent the hourly chronology of energy demand and renewable energy 
generation? 

2.  How do existing models represent the operational challenge of serving load over multi-day weather 
events and during atypical weather years, if at all?

3.  Are existing models capable of accurately representing technologies like long duration storage that, 
depending on the duration, can deliver energy over sequential days without recharging or can move 
energy over weeks and seasons?

37 Note that it is not enough to prove that the time sample input into the model closely matches the full time series. This approach - 
attempting to match the input time series - does not always provide reliable results (see, for example: Pfenninger. Dealing with multiple 
decades of hourly wind and PV time series in energy models: a comparison of methods to reduce time resolution and the planning 
implications of inter-annual variability. Applied Energy (2017);197:1–13. http://dx.doi.org/10.1016/j.apenergy.2017.03.051.)

http://dx.doi.org/10.1016/j.apenergy.2017.03.051
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Step 2: Benchmark 
Test current models against those that can represent time over a full 8,760-hour annual time period and 
that can develop a least-cost resource portfolio that is co-optimized against multiple scenarios. These 
benchmarking tests should examine the following questions:

1.  What are the effects of current time-sampling practices compared to full year, hourly resolution 
modeling?

2.  How does co-optimization change the least-cost resource mix compared to existing models?
3.  How well do portfolios from current models versus best-in-class models maintain reliability over 

multi-day weather events and atypical weather years?
4.  For each benchmarking test, examine how the models’ resulting least-cost resource portfolios differ, 

including how these differences impact overall cost, land-use needs, new transmission needs and 
air pollutants.

Step 3: Transition 
After building expertise and familiarity with new best-in-class modeling practices through the evaluation 
and benchmarking exercises, establish a plan to transition to using best-in-class modeling capabilities in 
future years’ resource planning exercises.

Funding for New Modeling Tools and Studies
We recommend that federal and state agencies fund new studies to build a stronger industry consensus 
about best-practice decarbonization modeling tools and approaches, and that they also fund the 
development of new public domain and commercial modeling tools.

Need for Broad Industry and Academic Consensus
The electric grid decarbonization studies that have emerged in the last several years have often relied 
on capacity expansion modeling tools that lack the ability to evaluate the full variability of weather and 
system conditions within a year, let alone across multiple years. These studies demonstrate that deep 
electric decarbonization is achievable, while also highlighting the challenges that are likely to emerge. 
However, as our case studies and other literature demonstrate, historical approaches to capacity planning 
are inadequate to accurately understand near-term operational challenges and long-term optimal resource 
portfolios. As a result, they risk sending misinformed near-to-mid-term investment signals to utilities and 
grid planners. Broader industry awareness of the shortcomings of typical modeling approaches is needed, 
as well as a greater understanding of why newer capabilities should be quickly adopted. 

Need for Better Public Domain Modeling Tools
Although several new modeling tools have the ability to model grids with the appropriate fidelity, and we list 
a few in Table 2 above, further work is needed to advance the maturity and adoption of many of these tools, 
and to introduce new tools to the market, so that utilities and grid planners have a set of robust enterprise-
class modeling options from which to choose. Both the federal government, through the Department of 
Energy and the national labs, and California through its research and development funding programs, 
have successfully demonstrated that grant funding can result in transformational advances in modeling 
capabilities that bring broad public benefits.38

38 See for example the federally funded National Renewable Energy Lab ReEDs model and the Energy Information Agency’s NEMS model, 
and E3’s RESOLVE model funded by California.
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Actions Form Energy is Taking
Releasing New Open Source Modeling Tools
Form Energy will be developing an open-source capacity expansion modeling tool in partnership with E3 and 
the University of California at San Diego and with funding from the California Energy Commission.39 The result 
will be a public-domain capacity expansion modeling tool with the ability to model full year, hourly resolution 
grid operations and to co-optimize resource portfolios across multiple scenarios of future grid conditions.

Demonstrating Best-In-Class Tools in Practice
• Role of Long Duration Storage in California Decarbonization Plans: In partnership with E3, the 

University of California at San Diego, and funding from the California Energy Commission, Form 
Energy will be supporting a study to assess different scenarios of long duration energy storage 
deployment in California to understand what role long duration energy storage can and should play in 
meeting the state’s decarbonization goals.40

• Long Duration Storage as a Risk Mitigation Strategy: Form Energy and Enel Foundation partnered on a 
study that showed how different energy storage technology attributes (energy capex, power capex, and 
round trip efficiency) can impact the risk and cost of firmed renewables at the project or portfolio level.41 

• Utility and Partner-Specific Studies: Building on this paper and case study, we continue to partner with 
utilities and project developers on case studies that build broader understanding about the value that 
advanced analytical methods can bring to their electric resource portfolios. 

39 See California Energy Commission GFO-19-308: Assessing Long-Duration Energy Storage Deployment Scenarios to Meet California’s 
Energy Goals

40 See California Energy Commission GFO-19-308: Assessing Long-Duration Energy Storage Deployment Scenarios to Meet California’s 
Energy Goals

41 See Enel Foundation and Form Energy: Large Scale, Long Duration Energy Storage, and the Future of Renewables Generation, December 2019.

https://www.energy.ca.gov/solicitations/2020-01/gfo-19-308-assessing-long-duration-energy-storage-deployment-scenarios-meet
https://www.energy.ca.gov/solicitations/2020-01/gfo-19-308-assessing-long-duration-energy-storage-deployment-scenarios-meet
https://www.energy.ca.gov/solicitations/2020-01/gfo-19-308-assessing-long-duration-energy-storage-deployment-scenarios-meet
https://www.energy.ca.gov/solicitations/2020-01/gfo-19-308-assessing-long-duration-energy-storage-deployment-scenarios-meet
https://www.enelfoundation.org/topic/a/2019/12/large-scale--long-duration-energy-storage--and-the-future-of-ren
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Appendix: Methods and Inputs
Methods
Construction of Time Sampling Cases:
We developed the “Time Sampled Case: Modeled” using a methodology based off of NREL’s Regional Energy 
Deployment System (ReEDS) model.42 We chose this framework because the methods that NREL employs 
are common to many other models, and their open source code is readily available. NREL’s time sampling 
methodology (which differs slightly from our method, discussed below) uses 17 time slices: four average 
hours from each of the average days in spring, summer, fall, and winter, as well as the total system peak day. 

We constructed the Time Sampled Case: Modeled using a greater number of hours than NREL’s ReEDS 
model, a conservative approach. To construct this case we use 120 hours of the year: five slices of 24 
hours each that represent the average spring, summer, fall, and winter days, as well as the peak day. Our 
time slices use our partner’s 2030 forecasted load and 2011 wind data. The exact time slices modeled are 
shown in Table 4. 

It is worth noting that this paper is not a critique of NREL’s ReEDS model. ReEDS is designed to provide 
nationwide indicative outlooks of resource needs for the U.S., and it includes many elements that we did 
not model here. Our goal is simply to highlight the potential impact of time sampling methods using a 
technique in a well-known model.

We used the resource portfolio from the Time Sampled Case: Modeled to create the Time Sampled Case: 
Achieved. In the Time Sampled Case: Achieved, we operate the assets from the Time Sampled Case: 
Modeled over a full year, developing a more realistic view of the actual costs of the portfolio. The resources 
in the Time Sampled Case: Achieved are therefore not a result of a capacity expansion optimization; they 
are the same as the portfolio developed in the Time Sampled Case: Modeled.

In both time sampled cases as well as the 8760 Case we used the forecasted 2030 load provided by our 
partner. We simulated wind production profiles for 2000-2018 in the wind regions adjacent to the utility 
using Renewables Ninja. Renewables Ninja is an open source tool that has been vetted extensively in 
academic publications.43 We assumed an 80 meter hub height and a 2.5 MW turbine size, which  is likely 
to slightly underestimate potential future wind production, as newer turbines are installed at higher hub 
heights and have larger capacities.

We identified a typical (2011), low wind (2010), and high wind (2014) year within this period. For each of these 
weather years, we ran a low and high cost scenario for the 8760 Case, the Time Sampled Case: Modeled, and the 
Time Sampled Case: Achieved. The costs for these scenarios are shown in Table 1 in the main body of the text. 

In both the time sampling cases and the co-optimization cases, we used linearized versions of minimum up 
and down time constraints, ramp rates, starts, stops, and other techno-economic details of the utility’s gas 
fleet. We modeled all of the gas and dual fuel units in our partner’s portfolio, excluding our partner’s primary 
coal-fired power plant. 

In both the time sampling cases and the co-optimization cases, we allowed the model to choose not to 
serve demand at any point. We imposed a penalty of $9,000/MWh for “lost load” when the model chose to 
shed demand rather than build resources to meet it.44

42 Cohen, Stuart, et al. 2019. Regional Energy Deployment System (ReEDS) Model Documentation: Version 2018. Golden, CO: National 
Renewable Energy Laboratory. NREL/TP-6A20-72023. https://www.nrel.gov/docs/fy19osti/72023.pdf.

43 See: 1) S. Pfenninger and I. Staffell, 2016. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and 
satellite data. Energy, 114, 1251–1265. And 2) I. Staffell and S. Pfenninger, 2016. Using Bias-Corrected Reanalysis to Simulate Current and 
Future Wind Power Output. Energy, 114, 1224–1239.

44 The value for “lost load” varies dramatically by estimate, but $9,000/MWh is generally in the middle of a wide range of VOLL estimates.

https://www.nrel.gov/docs/fy19osti/72023.pdf
https://www.nrel.gov/docs/fy19osti/72023.pdf
https://www.renewables.ninja/
https://www.nrel.gov/docs/fy19osti/72023.pdf
http://www.ercot.com/content/gridinfo/resource/2015/mktanalysis/ERCOT_ValueofLostLoad_LiteratureReviewandMacroeconomic.pdf
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Time slices used in time sampling 
The following table shows the time slices used in the time sampled cases. 

Table 4: Time slices used in the time sampled cases

Season Time Period Number of Hours 
From Each Period

Summer (June - August) Hourly average: 10 p.m. to 6 a.m. 8

Summer (June - August) Hourly average: 6 a.m. to 1 p.m. 7

Summer (June - August) Hourly average: 1 p.m. to 5 p.m. 4

Summer (June - August) Hourly average: 5 p.m. to 10 p.m. 5

Fall (September - November) Hourly average: 10 p.m. to 6 a.m. 8

Fall (September - November) Hourly average: 6 a.m. to 1 p.m. 7

Fall (September - November) Hourly average: 1 p.m. to 5 p.m. 4

Fall (September - November) Hourly average: 5 p.m. to 10 p.m. 5

Winter (December - February) Hourly average: 10 p.m. to 6 a.m. 8

Winter (December - February) Hourly average: 6 a.m. to 1 p.m. 7

Winter (December - February) Hourly average: 1 p.m. to 5 p.m. 4

Winter (December - February) Hourly average: 5 p.m. to 10 p.m. 5

Spring (March - May) Hourly average: 10 p.m. to 6 a.m. 8

Spring (March - May) Hourly average: 6 a.m. to 1 p.m. 7

Spring (March - May) Hourly average: 1 p.m. to 5 p.m. 4

Spring (March - May) Hourly average: 5 p.m. to 10 p.m. 5

Summer Peak Day Hourly demand and renewables on the peak load day 24

Total 4 representative days and 1 peak day 120

Construction of Co-Optimization Cases
Our co-optimization case study accounts for future uncertainties by considering six possible futures: low 
wind, typical wind, high wind, high cost of gas, high demand, and transmission constraints. In the high cost 
of gas, high demand, and transmission constrained scenarios, we used a typical year’s wind production 
profile (2011). In the transmission constrained case, we limited new wind deliverability to no more than 
twice existing wind capacity. In the transmission constrained case, new wind capacity can grow without 
bound; however, only twice the existing capacity can be delivered at any time (any excess wind generation 
is curtailed). 

In the Co-Optimized Case, we optimized the resource portfolio across all six futures, generating a single 
asset build and an average operational cost for the six futures. For this case study we used a simplifying 
assumption that all six futures are equally likely. A more extensive portfolio modeling effort intended to send 
investment signals would typically use probability-weighted futures. For example, we would weigh each 
weather year according to its relative probability, avoiding over-weighting low probability weather events. 
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In each of the other cases shown in Figures 7 and 8, we used Formware to generate a unique optimal 
resource portfolio based on the scenario in question (for example, the Low Wind or the High Cost Gas 
scenario). We then operated the resulting resource portfolio, generated from each single scenario, across 
all six scenarios with hourly resolution.  We then compared the costs and resource portfolios of these test 
year cases with the cost and resource portfolio of the Co-Optimized case. 

Formware Modeling Tool and Set-Up
To perform these case studies we used Formware, Form Energy’s capacity expansion and economic 
dispatch model. Formware finds the least cost mix of both assets and operational strategies required 
to meet electricity demand across diverse weather, load, and contingency scenarios. Formware’s inputs 
are common to many capacity expansion models, with the exception of the time granularity it requires. 
Formware optimizes assets over a full year or longer period with an hourly or more granular time profile. 
While Formware optimizes for a single time horizon, that horizon can be flexible and quite long. For 
example, Form Energy has used Formware to model the optimal storage sizing and operations for ten 
continuous years on an hourly basis.

Figure 9: Formware overview

 

The model’s inputs include required loads and capacity, renewable resource availability and cost, market 
conditions including electricity pricing and fuel prices, storage resources’ characteristics and costs, and 
system level constraints such as transmission capacity and limits on minimum and maximum generation. 
Formware outputs the asset mix, a set of operational decisions for each hour of the year (or multiple years 
when modeled), capital expenditures, and operational costs that meet all specified system constraints at 
lowest net present cost or highest net present value. 
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Cost Estimates
Wind costs are based on the 2030 low-range estimate from NREL’s 2019 Annual Technology Baseline. 
Lithium ion storage costs are extracted from the National Renewable Energy Lab’s (NREL’s) 2019 Annual 
Technology Baseline, and assume a full system replacement in year 15 of the asset life (assuming an 
8% nominal interest rate and 2% inflation). Electrochemical long duration energy storage (LODES) cost 
estimates are derived from a survey of techno-economic modeling and industry and academic expert 
judgements about the potential cost and performance parameters of emerging long duration storage 
technologies. These costs are not intended to represent Form Energy’s technology. The cost specifications 
and technology capabilities are shown in Table 3 in the main body of the study.

High cost resource portfolios
The main body of the text presented only the resource portfolios form the low cost cases. The following figures 
present the resource portfolios for the high cost cases. We see that in both cases, the model still chooses to 
build long duration energy storage. We also see that the general patterns of resource builds, in both the time 
sampled and multi-scenario case studies, are very similar between the low cost and high cost cases.

Figure 9: Resource portfolio by scenario (high cost Time Sampling case)
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Figure 10: Resource portfolio by scenario (high cost co-optimization cases)
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